Categories
Featured Stories Grant Stories News & Events

Mason and UVA Collaborate to Create Successful Energy-Efficient Desalination Technique

 

With 97% of the world’s water held by oceans, the effort to develop effective saltwater desalination is a high priority amongst the world’s scientists. Of the current water desalination methods, capacitive deionization (CDI) is the most prevalent, where ions and chemicals are energy-efficiently removed from water by applying a low electrical charge.  It is acknowledged, though, that there is much more to understand about the kinetics of the process which could improve the salt absorption capacity of CDI.

It was this challenge that caught the interest of Assistant Professor Pei Dong in the Department of Mechanical Engineering at the Mason’s College of Engineering and Computing. However, she recognized that tackling this topic would be substantially boosted by a 4-VA collaboration incorporating research underway in the lab of Baoxing Xu, in UVA’s Mechanical and Aerospace Engineering Department.  Xu’s group investigates multiscale/multiphysics modeling and simulations of solid-liquid interactions, especially systems in response to external stimuli such as temperature, electrical, and mechanical fields.  Dong believed that by working together, they could investigate the adsorption process to further identify, design, and synthesize more effective carbon materials for use in the CDI process.

Fast forward through the research (complete with a pandemic and the resulting lab closures) — Dong and her team report that they have indeed synthesized different carbon materials which show a much higher salt adsorption capacity. Dong anticipates that this technique could dramatically lower desalination costs and contribute to the sustainable development goals in Virginia, the US, and beyond.

Along with this successful research outcome, Dong explains that the 4-VA project produced several other beneficial consequences, especially a new collaboration among Mason and UVA faculty and students.  She also notes the journey provided a rich educational experience for students — with a combination of experimental and computational skills allowing them to contribute to future engineering innovation in this emerging field.

That experience was especially true for PhD candidate, Rui He. He oversaw the project in Dong’s lab, administering the tests — including surface area, water contact angle, electrical property, and water desalination.  He also prepared the wood converted carbon and the potassium hydroxide activation. In addition, the team worked together to print a 3D CDI cell and assembled the experimental setup, installing the wood converted carbon into the cell.

“I learned a lot about teamwork,” He explains. “I needed to teach the undergraduates how to run the lab experiments and data analysis as a team, and make sure every step is what we wanted.” He also learned about problem solving, “Sometimes we didn’t get the results we expected, and we needed to find out where things went wrong and fix the problem. For example, the 3D printed CDI cell was a challenge at the beginning because it can’t prevent the leakage of water.  We tried a lot of different designs, and finally got one to work.”

Several of the other Mason students involved in the research were undergraduate Crystal Bowers and PhD candidate Xiaozhou Huang. Pictured in the photo are (left to right): Rui He, Crystal Bowers and Xiaozhou Huang.

Thanks to the project’s success, the research has received wide recognition. The work entitled “Binder-Free Wood Converted Carbon for Enhanced Water Desalination Performance” has been published in the high impact journal Advanced Functional Materials. Rui He won the “Excellent Student Presentation Award” in the 242nd Electrochemical Society Meeting for both his oral presentation and poster. This work has also been presented at Virginia Clean Energy and Catalysis Club 2022 Summit (poster) and the International Mechanical Engineering Congress & Exposition 2022 (oral presentation).

The good work continues, thanks to the initial spark lit by 4-VA@Mason.

Categories
News & Events

4-VA@Mason Funds Development of Higher Education Community of Practice for Robotic Process Automation

Although Robotic Process Automation (RPA), a relatively new software technology used to automate tasks and business processes, has been implemented predominantly in government and the private sector, it is relatively untapped in higher education.  Thanks to a 4-VA@Mason grant, that will soon change for Virginia colleges and universities. The RPA Initiative at Mason’s Schar School will be leading the charge with the development of a Community of Practice (CoP) for higher education institutions throughout the state.

Through this software automation, colleges can reduce mundane and tedious work of administrative staff and increase quality assurance.  The VA Academic RPA CoP will help institutions of higher learning become familiar with the software automation and provide opportunities to collaborate across the commonwealth to enhance student experiences. The CoP will be a collaborative effort among all Virginia schools of higher education to also overcome the technical, management, and operational challenges that arise in designing and deploying effective RPA programs and initiatives. This includes important initiatives like designing common standards for credentialing, ensuring privacy and security, and designing common performance metrics to gauge RPA’s institutional impact to increase effectiveness and efficiency.

“Bringing innovative thinking to our academic partners across the commonwealth is the hallmark of 4-VA. We believe that the Academic RPA CoP will deliver important resources which will not only save money for participating institutions, but also create a higher level of quality control,” says Janette Muir, Vice Provost, Academic Affairs, and 4-VA@Mason Campus Coordinator.

The technology is already employed at three 4-VA schools — at George Mason for Vendor Management, at William and Mary for Student Engagement and at Virginia Commonwealth University for Grant Management — with great success. At Mason, RPA technology reduced the vendor management process from 15-20 hours per week to just minutes, saving employees valuable time and increasing productivity. Additionally, the software digital automation reduced human error rates to zero and increased data entry accuracy to 100%.

The RPA Initiative envisions that the technology could be employed in a wide variety of departments, including Admissions, Student Services and Athletics. “We are eager to launch this pioneering project and look forward to helping determine how RPA can aid the academic sector through knowledge sharing, webinars, speakers, “best practices,” and updates on programs which could be automated to reduce repetitive work done today by academic personnel,” said Dr. David Rehr, Co-founder of the RPA Initiative.

For more information and to get involved, visit https://rpa-va.us/

Categories
Featured Stories News & Events Uncategorized

Effective Communication During Disaster Response: Managing the Minutia

Wenying Ji

While Wenying Ji, Assistant Professor in the Department of Civil, Environmental, and Infrastructure Engineering at George Mason University, has previously collaborated with Xinghua Gao (Virginia Tech) and Jundong Li (University of Virginia), he saw a new opportunity to take their research deeper through a 4-VA Collaborative Research Grant.  Through a 4-VA grant, Ji hoped, he and his fellow researchers could delve into an analysis of stakeholder communications during disaster response, an important addition to his ongoing research integrating advanced data analytics and complex system modeling to improve the performance of infrastructure systems.

Through the 4-VA program, Ji could receive funding from 4-VA@Mason, while his collaborators at Virginia Tech and UVA could also receive modest financial support from their universities through 4-VA.  Ji’s hopes came true as the 4-VA@Mason Advisory Board saw the potential in the research; thus, all collaborators obtained support from 4-VA.  Ji’s research aimed to model, analyze, and identify effective communication and collaboration patterns that stakeholders utilize in response to disasters.

As Ji explains it, during disaster response, the communication process among agencies is complex due to the involvement of a great number of agencies at different hierarchical levels and sectors–the federal, state, and local level agencies; non-governmental agencies; and private contractors. Ji’s goal was to extract effective communication and collaboration patterns through an analysis of historical disaster response documents and evaluate various possible communication and collaboration patterns that may affect stakeholder response.

Xinghua Gao

Their work began with Gao at Virginia Tech who was able to collect a range of valuable data sources (e.g., situational reports and government-issued guidelines) that document stakeholder interaction processes. The team considered situational reports from natural disasters, including Hurricane Irma in Florida and Hurricane Harvey in Texas, and studied the reports documenting a 10-day period.

Jundong Li

That information was sent to Li, who is an expert in graph modeling. From there, the data went to Ji and graduate student Yitong Li. Li performed much of the analysis and gained valuable, practical experience from the research.

The result of their research has produced a quantitative model which evaluates the impact of information flow on the effectiveness of disaster response. Based on the model, a metric was then designed to evaluate the probability of community satisfaction. The designed model and the metric provide governmental stakeholders interpretable insights for evaluating the impact of information flow on their disaster response effectiveness, so that proactive actions can be targeted for enhanced disaster response. The team’s approach promotes inter-organizational collaboration in emergency management by helping stakeholders easily identify effective communication and collaboration patterns.

Yitong Li

Following their successful research, the group produced a journal paper entitled “Robustness of Stakeholder Response Networks for Infrastructure System Protection” for the American Society of Civil Engineers Journal of Management in Engineering, a conference paper and a presentation entitled “Understanding the Dynamics of Information Flow During Disaster Response Using Absorbing Markov Chains” were produced for the Winter Simulation Conference.

Next steps for the team? They plan to submit the proposal to the Humans, Disasters, and the Built Environment (HDBE) program, which is an NSF funded grant.  “Thanks to this grant, we hope to take our project to the next level,” says Ji.

Categories
News & Events Topics..

OER Treasure Trove: Help at Fenwick

What are Open Educational Resources?

Open Educational Resources (OERs) are freely-accessible teaching, educational, and research materials that either exist in the public domain or are available to users via an intellectual property license that permits their free use and re-purposing. These resources include complete online courses, course materials, modules, textbooks, streaming videos, tests, assessment tools, and software. They provide people worldwide with access to quality education and the opportunity to share, use, and reuse knowledge.

Mason’s Open Educational Resource Metafinder

In conjunction with Deep Web Technologies, University Libraries has developed a search engine that simultaneously queries a number of open educational resource sites. In addition to well-known OER repositories like OpenStax or Merlot II, our Metafinder also searches HathiTrust, DPLA, Internet Archive and other sites where valuable open educational materials may be found.

Although search targets are added regularly our OER Metafinder searches sixteen sites in real time, returning the top 250 or so hits from each site–in seconds.

Learn more at: https://publishing.gmu.edu/communication/open-educational-resources/

For more information, contact:

MASON PUBLISHING GROUP.

Aaron McCollough

EMAIL: amccollo@gmu.edu

PHONE: 3-2544

Further support:
• Assists in identifying and utilizing OER materials and publishing platforms
• Coordinates presentations/learning community meetings