4-VA

Using Virtual Realty to Prevent Falls in Older Adults

 

Annually, one in four senior citizens seek emergency care from a fall-related injury.  To help combat this statistic and prevent falls — which are often the result of poor balance — conventional physical therapy rehabilitation approaches have traditionally been utilized.  However, many in the physical therapy field now view immersive virtual reality (VR) technology as an intriguing option for older adults. While laboratory-based experiments provide promising findings, to date this technology has yet to be scaled-up and translated into clinical settings.

Two scholars at 4-VA schools with multidisciplinary backgrounds in related fields envisioned a future where clinicians could use affordable VR technology to outperform traditional diagnostics, therapeutics, and pharmaceutical approaches in fall prevention.  They saw an opportunity to develop effective uses of VR technology to detect cognitive-motor function in older adults, and identify fall-risk factors for this population.

Raffegeau
Rhea

The two scholars, Tiphanie Raffegeau, in George Mason’s School of Kinesiology, College of Education and Human Development, and Christopher Rhea, Old Dominion University’s Associate Dean for Research and Innovation, Ellmer College of Health Sciences, developed this project.  Raffegeau’s prior research focused on inducing anxiety during walking to study the fear of falling with an elevated height VR paradigm, while Rhea has primarily concentrated on examining how people adapt their steps to avoid obstacles in virtual environments. Through a 4-VA partnership, they wanted to increase accessibility to rehabilitative VR technology for interventions focused on reducing older adult fall-risk, while developing a framework for future scalable and fundable research.

Following 4-VA approval, Raffegeau hired three student programmers, Trevor Hsu, Chara Canfield, and Micah D Williams from the Virginia Serious Gaming Institute (VGSI), a Mason affiliated entity. The student programmers were supervised by VSGI research faculty member Jacob Enfield.

Raffegeau enlisted two of her graduate students to volunteer on the project — Kelly Poretti and Mackenzie Barrowman.

Raffegeau, Barrowman and Poretti

 

After a year of research Raffegeau notes, “Our testing proved fruitful and we identified a number of important results.” First, they found that experiencing fall-related anxiety in immersive VR can further impair walking performance.  Interestingly, they also found that the anxiety response tapers over time, suggesting that experiencing virtual high elevation settings may reduce fall-related anxiety. They also saw that anxiety-provoking VR settings could promote stability-related adaptations during overground walking in impaired populations, suggesting that the VR experience could serve as a clinical intervention to improve walking.

Their findings were enthusiastically shared at the Gait and Clinical Movement Analysis Society Annual Meeting, the American Society of Biomechanics Annual Meeting, and the College of Education and Human Development Research symposium.

Using preliminary data from the VR project, Poretti was awarded the Switzer Research Fellowship for Doctoral Dissertation Research by the Administration for Community Living for her dissertation project ‘Using Virtual Reality to Reduce Mobility-Related Anxiety in Lower-Limb Prosthetic Users’ which will support her dissertation work. Raffegeau and Rhea recently submitted an NIH R21 proposal to the National Institutes on Aging entitled, ‘Investigating Biobehavioral Responses to Mobility-Specific Anxiety Across the Menopause Transition and the Effects on Mobility and Fall-Risk’ focusing on the effect of VR-induced fall-related anxiety on walking in pre-and post-menopausal older women.

Concludes Raffegeau, “This 4-VA funding provided crucial funds to support my work as an early investigator and it has made my future grant applications stronger as evidence of institutional support for my career trajectory.”

View two videos produced during the research which illustrate the Low VR and High VR findings.

 

 

 

4-VA Funds Public Writing Collaborative to Support Virginia Educators and Students

 

4-VA was designed to encourage partnerships and resource sharing to advance higher education in Virginia. Bringing together researchers and thought leaders from around the commonwealth to work in concert has been key to the success of the program since its launch in 2010.

One area of higher education which has lacked comprehensive study is the pedagogy of public writing.  Public writing is generally defined as writing that is intended for a general audience with the goal of informing, persuading, or creating change. While courses in this focus have increased in number and scope, they have received relatively little support and scaffolding. Consequently, when Michelle LaFrance’s proposal The Virginia Community and Public Writing Collaborative was received by 4-VA@Mason, it won approvalLaFrance, who focuses on Writing and Rhetoric in George Mason’s English Department, saw the need to connect faculty and students in this growing educational community to pool knowledge and address opportunities for professional development and student success.

LaFrance

LaFrance explains, “Classes in community literacy, community writing, and public writing have all seen an emergence amongst Virginia-based writing studies researchers in the last five years.”  However, LaFrance recognized that few formalized lines of communication existed between the faculty who design, develop, and carry out research and deliver curricula at different institutions.  Working in silos, she reasoned, was no way to advance the implementation of successful writing programs at this level.

Thanks to 4-VA, LaFrance brought together Sweta Baniya and Sherri Craig at VT, Jen Almjeld at JMU, David Coogan at VCU; and Steve Parks and Kate Stevenson at UVA to begin the work of collecting information and developing relationships.  LaFrance then hired Emily Sok, a PhD student in Mason’s Writing and Rhetoric department, to coordinate the project and assist with the planning of the collaborative’s efforts and the creation of the website.

LaFrance also involved four Mason PhD candidates in Writing and Rhetoric as volunteers in the program: Tyler Martinez, Kelby Martinez, Kerry Smith, and Rosemary Pinney.

Fast forward one year from the grant award… Today, a variety of strategic outreach and communication efforts have come to fruition… The Virginia Community and Public Writing Collaborative has:

  • Constructed an archive of shared online resources,
  • Built a website (https://vacommunitywriting.org/) to foster the growing community,
  • Established a conversation to implement both formal and informal mentoring mechanisms,
  • Developed stronger relationships with off-campus communities and stakeholders and,
  • Created an email list of Virginia faculty and graduate students to carry on collaborative work.

The researchers began by looking closer at the widespread and wide-ranging growth of public writing programs in the state:  At George Mason, ENGH 302: Advanced Composition, a required course for all undergraduate majors, includes a public writing assignment.  Within VT’s Center for Rhetoric in Society, a community and corporate writing project explored how to better serve local nonprofits via workshops about writing email, mission statements, and other storytelling.  At JMU, WRTG 486: Writing in the Community is offered, as well as WRTG 484: Writing for Nonprofits, which teaches writing as a tool for socio-political engagement in local communities. In doing so, many JMU faculty members have developed partnerships with local public schools, hospitals, refugee resettlement agencies, public history programs, and other community agencies. At UVA, faculty and students created a “Community Writing Collective,” that includes partnerships with local nonprofit and civic organizations and seeks to make visible opportunities in teaching, studying, and understanding writing in community contexts.

The team facilitated several video-based meetings to discuss the shared goals, needs, and interests of those carrying out community writing and community literacy research and curriculum development in Virginia. These meetings allowed members of the collaborative to discuss shared research interests, identify additional funding sources, highlight ongoing research undertakings, and consider the mentoring needs of graduate students.   Additionally, they reviewed potential opportunities for the team at the national Conference on Community Writing — which nine of the team members subsequently attended.

Next, they funded a speaker series for faculty and graduate students which featured scholars of community writing including Aja Martinez, Donnie Johnson Sackey, Ada Hubrig, and Jo Hsu.

The work continues. Recently, the team hosted Annabel Park, a nationally recognized community organizer, documentary filmmaker, and founder of The Coffee Party, as well as author Ryan Skinell.

Although much has already been accomplished, LaFrance sees an expanded future for the work.  She envisions building on the groundswell of interest by establishing a research and pedagogical collaborative of faculty and graduate students from public universities and faculty at two-year colleges in Virginia, targeting emerging issues for the writing and rhetoric program.

“It was truly terrific to support graduate students and faculty with this grant—these achievements are important and energizing, as well as a key part of professional development,” says LaFrance.  “Through this, we have shared information about the projects, partnerships, campus initiatives, and strategies for community engagement that have been our most successful undertakings within the state.”

Taking Out the Trash Takes on New Meaning for Geoenvironmental Engineering Team

 

A growing concern among jurisdictions across the U.S. is the increasing amount of municipal solid waste entering treatment plants — generally comprised of and categorized as food, green, dry, and recycling.  One simple option to reduce the stress on waste treatment facilities is to pre-sort the materials, which also reduces the amount of waste going to landfills.  Although inexpensive and effective, this route critically depends on residents’ participation — an element that can be difficult to assure in order to achieve a successful outcome.

George Mason’s Kuo Tian and Ran Ji wanted to tackle this challenge.  Tian specializes in geoenvironmental engineering and Ji’s expertise is in system engineering. Their proposal to 4-VA@Mason focused on developing a decision support framework integrating the residential waste sorting process and real-time collection demand information.

Tian
Ji

 

 

 

 

 

 

The project team aimed to incorporate a range of interdisciplinary knowledge in civil engineering, data analytics, and operations research.  Their first objective was to build a database including publicly-available socio-demographic and economic information from the Environmental Protection Agency and the U.S. Census Bureau, which would provide logistical support to put the system into action. Secondly, they were interested in creating a learning-and-simulation framework to accurately predict waste generation and community participation rates in waste sorting and recycling programs. To do so, it would be necessary to consider the range of elements effecting the entire waste transfer system.

As 50–80% of total waste management expenditures are based on collection and transportation, Ji and Tian proposed the development of an optimization model to incorporate a myriad of important statistics.  The model would include: staff and shift scheduling, vehicle routing and weight, truck capacity assignment, fleet size, service time windows considering traffic patterns, facility operation hours, and school/restaurant collection time requirements.  The model also examined emissions released by the transportation sector. Finally under Tian’s microscope was the composition and weight variabilities associated with population density, waste generation rates, and local regulations; combined with family incomes, habits and customs, and seasonal changes.  It was a tall order, but the team saw that the seed funding provided by 4-VA could provide the means to collect and capture this important information.

After receiving the grant approval, their next move was to set the theory into a real-world application.  Tian and Ji connected with 4-VA colleague Weijun Xie, then in the Industrial & Systems Engineering Department at Virginia Tech. Tian selected graduate students Seyed Omid Hashemiamiri and Hanrui Zhao and undgrads Thu Le, and Kyle R Lowther to round out the research team.

Next, they worked with the Prince William County (Va.) Solid Waste Division to build the data-driven models to validate the results of the proposed decision support framework with practical data.  Taking more than one year, the work was methodical and painstaking, but garnered important findings.

“Our research has achieved significant results in enhancing municipal solid waste management using a multidisciplinary approach,” says Tian. “This body of work represents a pivotal step toward smarter, more efficient, and sustainable waste management practices.”

The model has led to a publication in the Sustainability journal titled “An Integrated Location–Scheduling–Routing Framework for a Smart Municipal Solid Waste System” https://www.mdpi.com/2071-1050/15/10/7774. Upon the proposed model and approach, Hashemiamiri has further developed it into multi-layper multi-objective optimization framework for waste management, leading to a joiurnal manuscript “Multi-Objective Optimization for Sustainable Municipal Solid Waste Management Using Genetic Algorithms” (currently under review). This research also constituted a vital component for Hashemiamiri’s PhD dissertation.

Tian concludes, “Further and more complex development of this model is now underway, with the aim of submitting another paper to Waste Management, a top tier journal. Based on the proposed modeling and solution framework, the team has developed and submitted one proposal to USDA and now is working on another NSF proposal.”

 

 

 

George Mason and Virginia Tech 4-VA Team Studies Wastewater Treatment Systems

 

One of the most pressing issues in human and ecological health is the abundance of poly and perfluoroalkyl substances (PFAS) and phthalate esters (PAEs) in our ecosystem — two classes of synthetic chemicals known as ‘forever chemicals.’  In addition to their destructive nature affecting wildlife, soil, and agriculture, they are also responsible for causing human health problems such as liver damage, thyroid disease, obesity, fertility issues, and cancer.

Furst

While scientists worldwide are racing to learn more about how to combat PFAS and PAEs in a variety of settings, Kirin Emlet Furst*, who was previously an Assistant Professor in George Mason’s Civil, Environmental and Infrastructure Engineering Department, was focused on PFAS AND PAEs in water treatment and wastewater reuse. (Furst has since moved on to join the faculty at 4-VA partner school Virginia Tech.)

Furst reasoned that wastewater treatment facilities are a major avenue through which PFAS and PAEs can contaminate drinking water and air, as many of these compounds are insufficiently removed by common treatment processes. Furst specifically wanted to explore the air-water interface. PFAS have a high surface activity which results in their attraction to the air-water interface. And while PAEs have a lower surface activity, they might be attracted to other materials that accumulate at the air-water interface. Research in full-scale treatment systems was needed to understand these interactions.

The 4-VA@George Mason Advisory Board recognized the importance of this research and awarded Furst’s 4-VA proposal, “The role of the air-water interface in breakthrough of PFAS and phthalate esters during wastewater treatment.”

Joining Furst in the research was 4-VA partner Zhiwu (Drew) Wang, a specialist in wastewater treatment and biological processes at Virginia Tech.  Furst also tapped Mason graduate student Meghana Kuppa who was already developing analytical methods to measure PFAS and PAEs. Ethan Gasper, an undergraduate in the Department of Chemistry and Biochemistry, assisted Kuppa with much of the bench work on the project.

Kuppa collected water samples and scum, which is the material that accumulates at the air-water interface, from process unit tanks at a wastewater treatment plant to measure the target contaminants and water quality parameters known to impact partitioning behavior. Their goal? Quantify the role of the air-water interface in enabling breakthrough of PFAS and PAEs in wastewater treatment facilities and identify potential engineering solutions.

Kuppa Selects Samples from Wastewater Treatment Facility

Although developing the complex methodologies for the project was a challenge, several important outcomes were realized. First, high levels of multiple PFAS were found in the scum from both the primary and secondary treatment processes. The team concluded that the PFAS levels in the primary scum samples, especially, were much higher than they could accurately measure due to interference from particulates and oily substances in the method. However, analysis of the secondary determined any PFAS present during secondary treatment is more likely to be found in the treated water and may also contaminate the facility air due to aeration in these tanks.

While fewer PAEs were found in the scum samples, Kuppa’s experiments show that phthalates can sorb to organic material in the scum. This sorption may contribute to the difficulty in removing phthalates during wastewater treatment.

Furst reflects on the research and the 4-VA funding noting, “The 4-VA award empowered my group to pursue this new line of research and helped to support Kuppa’s innovative thesis projects. Plus, now we have preliminary data to pursue NSF and other high-impact external funding.”

Gasper’s Benchwork Samples
Gasper’s Poster Presentation

 

 

 

 

Examining the Consequences of Land Ownership in Rural Virginia

 

 

         Van Sant

Assistant Professor Levi Van Sant’s work in George Mason’s School of Integrative Studies focuses on environmental (in)justice surrounding food, agriculture, and land use. Previously, Van Sant has analyzed how land ownership affects the ways that racial and class dynamics of the past are reproduced in the present, focusing on the coastal United States South.  More recently, however, he was interested in the ramifications of land ownership closer to home — in “the backyard” of two 4-VA partner universities, George Mason and James Madison.

Van Sant wanted to apply an existing model which suggests that higher rates of absentee and corporate-owned timberland in rural Alabama are associated with lower quality-of-life indicators such as income and education.  It has also been observed that large landowners hold disproportionate political and economic power in rural communities.

Van Sant wanted to examine land use and ownership in the Shenandoah Valley and Middlesex County in Virginia. He also saw an opportunity to provide students at both schools a chance to hone their analytical skills — as a first reading of land use and ownership records often only tell part of the story.  He wanted the students to research the differences in data management between municipalities, recognize the difficulties in accessing information in rural counties, and understand how land ownership has repercussions for low-income and minoritized communities.

Van Sant applied for and received a 4-VA@Mason grant for this research and set his team to work. Jeremy Campbell, the Associate Director for Strategic Engagement at George Mason’s Institute for a Sustainable Earth; and Case Watkins, Assistant Professor in the Department of Justice Studies at James Madison agreed to volunteer their time to help coordinate the project.

The project centered on two partnerships with communities for whom patterns of land use and ownership are crucially important: small farmers in the Shenandoah Valley, which was overseen by Watkins, and the Indigenous Tribal Nations of the Middle Peninsula Region, which was facilitated by Campbell.

“We produced a large database of land ownership records for the two study regions in rural Virginia. From this database we created a series of maps that represent trends in land ownership across both study regions. We also compiled a set of maps to contextualize and present this work. The datasets and maps are significant resources for further analysis,” noted Van Sant. “This grant provided invaluable support for further developing our research methods; creating a solid dataset for on-going research; and, most importantly, building analysis and tools for future community engagement.”

Several students were involved with the project. George Mason graduate student Tyler Grant received funding for his work handling Geographic Information System analysis and data organization. Undergraduate students Yonna Angeles, Erin MacMonigle, and Jacquelyn Batchelor received funding as mapping assistants, as well as Tamar Gorgadze, who acted as a research assistant.

At JMU, three students also worked on the project — Gina Bigo analyzed land ownership trends, Madelynn Warren looked at county land use, and Ally Windham considered the historical overview and analysis.

George Mason and Virginia Tech Team Up to Improve Online Searches

 

Although algorithms can make online searches faster and easier, they can also be fraught with dangerous biases. Research has shown that image search engines can exhibit discrimination against females or people of color, and bias is also found in online searches in employment recruiting and the healthcare field.

While efforts have been made to unveil and tackle fairness and bias glitches in search and recommendation systems, two key issues have been largely overlooked: Existing research treats different types of bias in isolation, resulting in specialized methods that are difficult to generalize; and, they focus on bias in the static environment leaving the dynamic nature of the search and recommendation process unexplored.

Zhu

Ziwei Zhu, Assistant Professor in George Mason University’s College of Engineering and Computing, wanted to demystify the underlying correlation of different types of bias and develop new multi-task and graph learning algorithms to support fair and unbiased searches and recommendations.  Using this information, he wanted to create and release open-source software on this subject for the research community, significantly advancing trustworthiness of AI techniques. Finally, Zhu was intent on ensuring the debias system would be sustained long term.

 

Zhu enlisted the help of 4-VA partner Dawei Zhou in Virginia Tech’s Department of Computer Science.  Together, they responded to the 4-VA call for proposals, and, “Towards Consolidated and Dynamic Debiasing for Online Search and Recommendation” was approved for funding.

Joining the effort at George Mason was graduate student Jinhao Pan, who handled algorithm implementation and paper writing.  Pan was supported by a team of Zhu’s student researchers (pictured below).The group began by developing an end-to-end adaptive local learning framework to provide recommendations to both mainstream and niche users.

Zhu sees the audience as other researchers focusing on fair and unbiased recommendations and searches, or practitioners — software developers and AI engineers — in the industry who want to improve the fairness and trust of their systems. To that end, Zhu’s group created a boosting-based framework designed to decrease a broad spectrum of biases. This framework employs a series of sub-models, each tailored for different users and item subgroups.

 

Zhu’s Student Researchers

The results were impressive, with experiments demonstrating superior debiasing capabilities against state-of-the-art methods across four model bias types.

However, Zhu knew that their new framework for recognizing and removing biases would only be effective if implemented.  To that end, the group made the algorithm implementation open source through various options — https://github.com/JP-25/end-To-end-Adaptive-Local-Leanring-TALL- and https://github.com/JP-25/CFBoost.

They also presented and published Combating Heterogeneous Model Biases in Recommendations via Boosting at the Association for Computing Machinery International Conference on Web Search and Data Mining. End-to-End Adaptive Local Learning for Alleviating Mainstream Bias in Collaborative Filtering was also presented and published at the European Conference on Information Retrieval.

In addition to the framework developed, the project increased collaboration between George Mason and Virginia Tech through coursework.  The new algorithms have been integrated into materials of Mason’s undergraduate and graduate level Data Mining courses CS584 and CS484.

Zhu has used the outcome of this project as the foundation for a proposal submitted to the National Science Foundation Computer and Information Science and Engineering Core program.

Concludes Zhu, “This 4-VA grant helped me set up some computational resources so that I can conduct further research and supported travel to academic conferences to disseminate our research and learn from others.  We believe this provided the groundwork for some very important first steps in this field.”

 

 

 

 

 

Bringing Context and Focus to the Music of Early Black Virginians

 

 

             Green

In higher education, “You don’t know what you don’t know” is often the axiom that spurs research to shine a light on a subject not thoroughly illuminated. For Emily Green, music historian and faculty member in George Mason University’s College of Visual and Performing Arts, this maxim served as a motivator to launch a 4-VA@Mason research project titled Music of Early Black Virginians.  Green, whose previous research focused on music publishing and marketing in eighteenth- and nineteenth-century western Europe and America, became especially interested in the backstory of this area of music history while teaching Nineteenth-Century African American Music, a graduate course at Mason

Green recognized that much of this important music history needed to be cataloged and made publicly available.  “It was a long-standing wish of mine to create a resource for educators to help them understand the variety of genres in Black-American music,” she explained.  “K-12 music educators do not always have access to library databases or peer-reviewed journals. I wanted to create an open-access landing point to help teachers navigate the rich resources they can use to learn and quickly enhance their knowledge—and build lesson plans for students of a variety of ages.”To that end, Green sought the involvement of scholars in the field at several 4-VA partner schools to help her put the project into motion: Mary Caton Lingold at VCU and Bonnie Gordon at UVA. Both readily volunteered their time to bring this multi-level and multi-faceted research to fruition. Michael Nickens (a.k.a. Doc Nix — most recognized as the leader of George Mason University’s “Green Machine,”) also eagerly joined the team. Additionally, Maria Ryan, at Florida State University, came on to collaborate on the project.

4-VA funding provided UVA graduate students Laura Carrington OBrion and Sergio Manuel Silva and George Mason undergrads Crystal D. Williams and Jaelin Mitchell the time and space to build a website of nineteenth-century sources that reference Black-American music making: https://masonlibraries.gmu.edu/blackmusic/s/music-black-va/page/home.

From there, the team then published a wide-ranging website Early Black Music in Performance https://earlyblackmusic.4va.gmu.edu/.

A zoom conference helped introduce and promote the site: Presenters included 4-VA cohort, Kayondra Reid, music educator at Oak Street Elementary School in Falls Church, VA, and Tyler Diaz, Hunter College, NY. Artist Shodekeh Talifero also gave a presentation for the Dewberry School of Music entitled “Breaths along the Potomac.”

As an added bonus resulting from the effort, Green, Lingold, and Ryan have been contracted to develop a related anthology for Oxford University Press, Sources in Early Black Atlantic Music, which is expected to be published in 2026.

“Most music educators are not taught much about the variety of Black American music in bachelor’s or master’s degrees in our field. Between the database and the web resource, and soon the anthology, our hope is that educators can learn more about reliable print and online resources to use in the future,” says Green.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

George Mason and Virginia Tech Collaboration Creates Connections in Science Policy

 

Today, Virginia is one step closer to bridging the gap between science and policy — a critical relationship necessary to navigate a range of socio-technical issues including climate change, biodiversity loss, pandemics, and poverty. Creating this connection was the result of a yearlong research project to identify U.S. and Virginia science policy programs which engage STEM-H scientists and engineers in science policy with the end result of helping both elected and non-elected officials access technical information to assist in decision making.

Akerlof
Schenk

This work was completed thanks to a coalition of faculty and students supported though a 4-VA@Mason grant.  The team was led by KL Akerlof in George Mason’s Department of Environmental Science & Policy and Todd Schenk, Chair and Associate Professor in the Urban Affairs and Planning Program of the School of Public and International Affairs at Virginia Tech and Director of the Science, Technology & Engineering in Policy Program.

To advance best practices for professional mentorship of early career researchers and to  build capacity for training researchers to engage in public policy, the team developed a database of U.S. science policy programs and conducted a case study of those in Virginia through surveys and interviews with their leaders. Akerlof and Schenk were assisted in the study by Adriana Bankston, an expert in science policy, and Mason students Kelsey Mitchell, Kate Saylor, and Aniyah Syl, and Kenneth Dewberry at Virginia Tech.

Following the yearlong collaboration, the results—along with program blogs and a listserv—has been developed and is featured on a new website created to support this emerging network of science policy programs: https://scipolprograms.org/.

The results of their research showed that the majority (57%) of U.S. science policy programs are state based. These programs include student organizations, government placements and fellowships, and academic certificates, degrees, and other training. However, it was recognized that there is only a limited ability to implement evidence-based approaches within these programs.

The team compared programmatic outcomes from Virginia’s science policy programs with those described in academic literature. Academic and professional scholarship in science communication, and public affairs suggests that curricula for engaging scientists and engineers should broadly cover communication and policy processes.

In addition, they found that training programs would benefit from evaluation models and measures, although the lack of consistent theoretical foundations and constructs across this highly multidisciplinary scholarship reduces their utility. It was concluded that a common framework, which includes shared terms and relationships, is needed to promote the transdisciplinary growth of the field.

With the results of their analysis in hand, the team held a state webinar on science policy programs featuring 11 of the 13 Virginia program leaders. The project was also highlighted at a Virginia Sea Grant Symposium and was the topic of an American Geophysical Union e-lightning talk.

Bankston and Akerlof presenting research findings

While the results of the study proved important, the project also provided rich opportunities to the students participating in the effort. Undergraduate student Syl and doctoral candidate Mitchell helped lead the webinar and participated as co-authors on the publications. Further, Syl co-presented at the Virginia Sea Grant Symposium. Plus, master’s student Saylor successfully defended her thesis on the Commonwealth of Virginia Engineering and Science (COVES) Policy Fellowship. She subsequently presented her results to the President of the Virginia Academy of Science, Engineering, and Medicine, Dr. James Aylor.

The first of two research articles based on the project has just been accepted with minor revisions by the journal Evidence & Policy. A second article has also been submitted for publication. They are also in conversation with the leadership of the Virginia Academy of Science, Engineering, and Medicine about the development of a new weeklong science policy program for undergraduate students from across the Commonwealth’s public universities.

Akerlof reflects on receiving the 4-VA@Mason award, “This funding supported our cross-institutional collaboration and ability to conduct baseline research and networking that have been fundamental to understanding how the landscape of science policy training programs is evolving across the United States.”

 

 

 

 

 

 

Following a Slow Start, 4-VA@Mason Research on Species Resilience Produces Landmark Results

Associate Professor David Luther, who has spent the last 14 years in George Mason’s Biology Department studying ecology, evolution, and conservation, recognizes the importance of playing the long game in research and education.  Great outcomes don’t happen overnight.  But even Luther couldn’t have imagined the hurdles and roadblocks ahead of him following 4-VA@Mason’s approval of his 2019 Collaborative Research Grant proposal “Species richness resilience to habitat fragmentation and restoration in tropical rainforests.”

Luther’s vision was to document and measure differences, using audio and video devices, in the animal community composition and the rate of recovery of animals in secondary forest and forest fragments – areas where contiguous forested areas are broken into smaller forest patches, separated by barriers such as roads, agriculture, or utility corridors.  His plan was to install recording equipment at 50 sites as part of the Biological Dynamics of Forest Fragments Project (BDFFP) in the Amazon rainforest of Brazil. Luther paved the way for this project by connecting with the Brazilian National Institute of Amazonian Research (INPA), an Amazon research institution based in Manaus.

The proposed budget was entirely devoted to purchasing the wide array of materials necessary for the effort — cameras, acoustic recorders, batteries, and other supplies — along with the international travel needed to bring the project to fruition. Luther then assembled a team of faculty and student research volunteers at 4-VA partner schools and on the George Mason campus.

Just underway in 2019, all efforts came to a complete halt in March 2020 as Covid-19 struck worldwide.  Luther faced a myriad of challenges: the inability to travel to Brazil and enter the field site; students selected for the research had to pivot to new endeavors which would allow them to graduate while studying remotely; and partner schools needed to move on to other projects during what would be the two-year waiting period. What’s more, one of the key members of the planning team, George Mason’s Tom Lovejoy, passed away in December of 2021.  Lovejoy was recognized as one the world’s leading conservation biologists and often referred to as the “godfather of biodiversity.” In his passing, Luther lost a critical member of the team and a mentor.

However, Luther stayed the course, revamped his team, re-wrote the schedule, and maintained his commitment to get the project moving forward as soon as possible.  Finally, in June 2022, he received the green light to move ahead.  Between June and October 2022, 136 cameras and 81 acoustic devices were installed across 50 sites at BDFFP.

Today, to Luther’s great delight, the results have proved far more successful than he could have ever anticipated. Tens of thousands of animal images from camera traps and audio recordings have already been collected.

To analyze the data, Luther built a team of 15 George Mason undergraduate researchers, artificial intelligence experts, and a non-profit organization (Arbimon) that specializes in analyzing acoustic recordings from the tropics to help identify animals.

In the fall of 2022, Luther mentored student researchers to help with the endeavor. Aline Medeiros, a PhD student in Environmental Science and Policy (ESP), helped manage the undergraduate researchers working on the audio files. Volunteer students on this project were Alexis Lembke, Amanda Jones, Adriana Em, Madison Cheung, Morgan Ellingsworth, and Grace Carriero. Medeiros will also use the captured data as the basis of her PhD research.

Another set of students helped identify animals in the camera images and entered that information into a large database. Hibo Hassan, Jordan Seidmeyer, Katie Russell, Carolian Sanabria, Adrian Em, Alix Upchurch, Piper Robinson, Tristan Silva-Montoya, and Estefany Umana spent hours creating this treasure trove of records. Emilia Roberts, a MS student in ESP, managed these undergraduate researchers.

Explains Luther, “For the acoustic recordings, we built templates for 250 bird species, and trained AI models to automatically detect and classify songs for each. We have already detected 201 of the 250 species. The model performed very well in our evaluations, achieving an average precision across all classes of 0.94.  Thanks to our model, new recordings can be passed through it to automatically detect species calls, facilitating long-term monitoring and efficient analyses moving forward. We are now working with local experts in Manaus, Brazil to apply the same platform for frogs at our study sites in the Amazon rainforest.”

The biodiversity data of birds and mammals is being used to assess how each species responds to variations in forest structure and recovery from forest fragmentation. Luther brought on Konrad Wessels from George Mason’s Geography & Geoinformation Science Department to assist with satellite information from the Global Ecosystem Dynamics Investigation instrument (GEDI).  GEDI uses high resolution lasers to provide detail in three-dimensional forest structure. The GEDI results will build predictive models looking at how the three-dimensional forest structure can forecast mammal and bird diversity and individual species occurrence in tropical rainforests. In an important finding, the team has determined that the diversity of three-dimensional forest structure heights and density of foliage is the biggest predictor of mammal and bird diversity.

The project continues to gain traction. The team has created a website featuring the results of the acoustic portion of the research, https://bio.rfcx.org/bdffp-acoustics, which has been very well received.

In addition, some of the acoustic training models were used by teams competing for the X-Prize, a competition designed to encourage technological developments supporting “radical breakthroughs for the benefit of humanity.”

Luther also applied for and received a $200,000 National Science Foundation grant which built off of the 4-VA funded study and is being used in part to continue both the camera and acoustic research.  Luther and Wessels recently submitted a grant to NASA to expand on the research findings and apply them to the entirety of the Amazon basin.

Concludes Luther, “Through 4-VA@Mason, this project is up, running, and delivering fantastic information that will help scientists worldwide better design monitoring schemes for biodiversity in remote tropical forests, as well as those interested the relationship between habitat structure and degradation and species resilience to disturbance. The grant helped us get to the first step, and we are confident this project will continue to expand in the future with our excellent Brazilian collaborators, current NSF funding, and other future external funding.”

George Mason Team Identifies Technology to Enhance Artificial Photosynthesis

 

When a 4-VA Collaborative Research Grant results in the production of a novel concept for technology solutions to support energy and climate issues, while also sharing resources and data between higher education institutions in Virginia and providing faculty and student research opportunities, it is another win for the program. 

This was achieved following 4-VA’s approval of a proposal by George Mason’s Yun Yu, an Assistant Professor in Chemistry and Biochemistry Department, for a grant entitled Nanoscale Visualization of Electrocatalytic Carbon Dioxide Reduction Activity at Cu Nanocatalysts.  Yu’s goal was to investigate options in catalytic electrode materials to improve and enhance electrocatalysis, a process essential for harnessing sustainable energy sources for artificial photosynthesis. While nanostructures are currently recognized as the most successful catalyst for many chemical reactions, there is more to understand about tailoring their crystalline planes to improve activity and selectivity. 

Yu wanted to gain deeper insights into various nanocatalysts used in carbon removal technologies. The conventional approach to conducting this study often involves measuring the entire catalyst, composed of numerous small particles with varying sizes and shapes. However, critical information, such as the impact of heterogeneities on performance, is often lost in such ensemble measurements.  Yu saw the potential for leveraging the the nanoscale scanning electrochemical microscopy on the George Mason campus to obtain detailed surface reactivity maps of nanocatalysts.  However, to do so, Yu needed to acquire shape-controlled nanostructures, including copper nanowires, copper nanocubes, and nickel–iron layered nanosheets.  He did so through a partnership with Sen Zhang, Associate Professor of Chemistry at UVA. 

Yu’s team, graduate student Dan Tran and undergraduate students Solyip Kim, Melissa Nguyen, and Mackenzie Dickinson played a key role in the project, receiving funding and real-world research experience. Together, they identified furfural reduction, an important reaction for sustainable biofuel generation. They noted a distinct contrast in activity between copper and graphite support. “These preliminary experiments have demonstrated the viability of our scanning electrochemical technique in spatially resolving catalytic activity across nanoscopic structures,” explains Yu. They further expanded the application to the study of nickel–iron catalysts. “Our data suggested that adding trace amount of cerium oxide to the catalysts significantly enhances water oxidation activity. We would not have these insights without this powerful electroanalytical technique.” says Yu.  

The initial results have provided Yu with a springboard to develop external grant proposals to systematically study the role of cerium oxide and quantify the effects of its loading on the apparent catalytic activity of the developed catalysts.  “This 4-VA opportunity allowed us to create a partnership with UVA, create a team to implement further investigation via George Mason’s nanoscale scanning electrochemical microscopy, and now apply for further funding to move this project forward,” concludes Yu. 

 

Pictured in Featured Image: Graduate student Dan Tran operating the scanning electrochemical microscope.