4-VA

Course Redesign Using Game Playing Promotes Understanding of Data Base Management

Undergraduate computer science majors in the database management course at Virginia Military Institute (VMI) are now having fun learning Structured Query Language (SQL), through a unique game playing approach — bypassing the traditional educational methods of memorization and passive participation.

Enfield

Although mastery of SQL is recognized as a necessary skill to manage a variety of data-intensive domains, it is acknowledged that the instructional methods have not evolved to address the learning challenges found in the course materials.   Thanks to George Mason’s Jacob Enfield, in the College of Visual and Performing Arts and the Virginia Serious Game Institute, and Sherif Abdelhamid at VMI — along with a 4-VA grant — students at VMI are approaching SQL education in an entirely different way, and the results are impressive.

Abdelhamid

To add in the fun factor, Enfield and Abdelhamid created a ‘murder mystery’ game.  As players advance through the game, they encounter a series of questions designed to test their SQL skills. Each correctly answered question brings the player closer to solving the mystery and reinforces concepts in a practical approach.  The game provides a simulated real-world context in which learners apply their skills to solve an authentic problem within the simulated context of the game world. Additionally, the game incorporates common components that enhance engagement, such as story, goals, points, and increasing levels of challenge.  The scoring system introduces a competitive element among players, as players answer more questions correctly their scores increase and they can advance to the next level.  “With this approach, we were able to target today’s digital-native students, accommodating their preference for interactive, feedback-rich learning environments,” explains Enfield.

Supporting Enfield and Abdelhamid in the development of the system were Mason students Swetha Annapoorna and Ajay Addike, who built the web apps.

Student evaluations show that the new learning approach is working. Students liked the system’s engaging nature, competitive elements, visual simplicity, and interactive features.  In addition, students rated the game highly for reinforcing SQL concepts learned in class. All students reported interest in understanding more about SQL due to the game.  Says Abdelhamid, “A large majority of the students felt that this approach taught them to manage SQL problems strategically, which is essential for learning any programming language.”

 

With the successful course redesign under their belt, Enfield and Abdelhamid are now in the dissemination process. The course was featured at George Mason’s Innovations in Teaching and Learning Conference and presented at the Frontiers In Education Conference.

In another result of the collaboration, the Enfield and Abdelhamid relationship has proved fruitful, as the two have already received outside funding for a different project. “This 4-VA opportunity has helped me reach out to other universities and make connections I normally would not have made,” concludes Enfield. “And we were able to deliver a great new way to teach an important skill.”

Bringing Context and Focus to the Music of Early Black Virginians

 

 

             Green

In higher education, “You don’t know what you don’t know” is often the axiom that spurs research to shine a light on a subject not thoroughly illuminated. For Emily Green, music historian and faculty member in George Mason University’s College of Visual and Performing Arts, this maxim served as a motivator to launch a 4-VA@Mason research project titled Music of Early Black Virginians.  Green, whose previous research focused on music publishing and marketing in eighteenth- and nineteenth-century western Europe and America, became especially interested in the backstory of this area of music history while teaching Nineteenth-Century African American Music, a graduate course at Mason

Green recognized that much of this important music history needed to be cataloged and made publicly available.  “It was a long-standing wish of mine to create a resource for educators to help them understand the variety of genres in Black-American music,” she explained.  “K-12 music educators do not always have access to library databases or peer-reviewed journals. I wanted to create an open-access landing point to help teachers navigate the rich resources they can use to learn and quickly enhance their knowledge—and build lesson plans for students of a variety of ages.”To that end, Green sought the involvement of scholars in the field at several 4-VA partner schools to help her put the project into motion: Mary Caton Lingold at VCU and Bonnie Gordon at UVA. Both readily volunteered their time to bring this multi-level and multi-faceted research to fruition. Michael Nickens (a.k.a. Doc Nix — most recognized as the leader of George Mason University’s “Green Machine,”) also eagerly joined the team. Additionally, Maria Ryan, at Florida State University, came on to collaborate on the project.

4-VA funding provided UVA graduate students Laura Carrington OBrion and Sergio Manuel Silva and George Mason undergrads Crystal D. Williams and Jaelin Mitchell the time and space to build a website of nineteenth-century sources that reference Black-American music making: https://masonlibraries.gmu.edu/blackmusic/s/music-black-va/page/home.

From there, the team then published a wide-ranging website Early Black Music in Performance https://earlyblackmusic.4va.gmu.edu/.

A zoom conference helped introduce and promote the site: Presenters included 4-VA cohort, Kayondra Reid, music educator at Oak Street Elementary School in Falls Church, VA, and Tyler Diaz, Hunter College, NY. Artist Shodekeh Talifero also gave a presentation for the Dewberry School of Music entitled “Breaths along the Potomac.”

As an added bonus resulting from the effort, Green, Lingold, and Ryan have been contracted to develop a related anthology for Oxford University Press, Sources in Early Black Atlantic Music, which is expected to be published in 2026.

“Most music educators are not taught much about the variety of Black American music in bachelor’s or master’s degrees in our field. Between the database and the web resource, and soon the anthology, our hope is that educators can learn more about reliable print and online resources to use in the future,” says Green.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

George Mason and Virginia Tech Collaboration Creates Connections in Science Policy

 

Today, Virginia is one step closer to bridging the gap between science and policy — a critical relationship necessary to navigate a range of socio-technical issues including climate change, biodiversity loss, pandemics, and poverty. Creating this connection was the result of a yearlong research project to identify U.S. and Virginia science policy programs which engage STEM-H scientists and engineers in science policy with the end result of helping both elected and non-elected officials access technical information to assist in decision making.

Akerlof
Schenk

This work was completed thanks to a coalition of faculty and students supported though a 4-VA@Mason grant.  The team was led by KL Akerlof in George Mason’s Department of Environmental Science & Policy and Todd Schenk, Chair and Associate Professor in the Urban Affairs and Planning Program of the School of Public and International Affairs at Virginia Tech and Director of the Science, Technology & Engineering in Policy Program.

To advance best practices for professional mentorship of early career researchers and to  build capacity for training researchers to engage in public policy, the team developed a database of U.S. science policy programs and conducted a case study of those in Virginia through surveys and interviews with their leaders. Akerlof and Schenk were assisted in the study by Adriana Bankston, an expert in science policy, and Mason students Kelsey Mitchell, Kate Saylor, and Aniyah Syl, and Kenneth Dewberry at Virginia Tech.

Following the yearlong collaboration, the results—along with program blogs and a listserv—has been developed and is featured on a new website created to support this emerging network of science policy programs: https://scipolprograms.org/.

The results of their research showed that the majority (57%) of U.S. science policy programs are state based. These programs include student organizations, government placements and fellowships, and academic certificates, degrees, and other training. However, it was recognized that there is only a limited ability to implement evidence-based approaches within these programs.

The team compared programmatic outcomes from Virginia’s science policy programs with those described in academic literature. Academic and professional scholarship in science communication, and public affairs suggests that curricula for engaging scientists and engineers should broadly cover communication and policy processes.

In addition, they found that training programs would benefit from evaluation models and measures, although the lack of consistent theoretical foundations and constructs across this highly multidisciplinary scholarship reduces their utility. It was concluded that a common framework, which includes shared terms and relationships, is needed to promote the transdisciplinary growth of the field.

With the results of their analysis in hand, the team held a state webinar on science policy programs featuring 11 of the 13 Virginia program leaders. The project was also highlighted at a Virginia Sea Grant Symposium and was the topic of an American Geophysical Union e-lightning talk.

Bankston and Akerlof presenting research findings

While the results of the study proved important, the project also provided rich opportunities to the students participating in the effort. Undergraduate student Syl and doctoral candidate Mitchell helped lead the webinar and participated as co-authors on the publications. Further, Syl co-presented at the Virginia Sea Grant Symposium. Plus, master’s student Saylor successfully defended her thesis on the Commonwealth of Virginia Engineering and Science (COVES) Policy Fellowship. She subsequently presented her results to the President of the Virginia Academy of Science, Engineering, and Medicine, Dr. James Aylor.

The first of two research articles based on the project has just been accepted with minor revisions by the journal Evidence & Policy. A second article has also been submitted for publication. They are also in conversation with the leadership of the Virginia Academy of Science, Engineering, and Medicine about the development of a new weeklong science policy program for undergraduate students from across the Commonwealth’s public universities.

Akerlof reflects on receiving the 4-VA@Mason award, “This funding supported our cross-institutional collaboration and ability to conduct baseline research and networking that have been fundamental to understanding how the landscape of science policy training programs is evolving across the United States.”

 

 

 

 

 

 

4-VA Team Develops Rhetorical Approach to Counter Distrust in Blood Transfusions

As the healthcare industry wrestled with vaccine denial during and after the pandemic, another related concern emerged. For some Americans, a new form of skepticism grew around blood transfusion. This population perceives that blood banks and the blood supply are unsafe due to donations from those vaccinated against COVID and subsequently protest receiving a blood transfusion even when medically necessary.

Both vaccines and the blood supply system sit at the crossroads of public health services and private decision-making. To be successful, patients must trust in the system, which necessitates strong community connections and clear messaging. A broken link in the communication structure can have dire consequences.

Lawrence
Gerdes

In George Mason’s College of Humanities and Social Sciences, Heidi Lawrence – who has long researched the rhetoric of medical and scientific controversies – and Julie Gerdes at Virginia Tech – who focuses on health communication -decided to team up to address this compelling, novel issue. Although Lawrence knew Gerdes, a 4-VA collaborative partnership would allow them to join forces and get the support they needed for this important research.  4-VA leadership at George Mason and Tech agreed, and the pair were awarded a grant to launch the effort.

 

Their goal was ambitious.  They wanted to study this predicament in the field of hematology and transfusion medicine within a framework of communication; produce rhetorically informed appropriate responses and create a framework for investigating and countering similar problems with blood donation and vaccine refusal at other sites.

Lawrence and Gerdes asked graduate students Jessie Wiggins at Mason and Temitope Ojedele-Adejumo at Tech to join them in the project.

The group identified several crucial objectives for their research:

  1. Analyze vaccine concerns expressed on websites, in social media, through podcasts, and other sources to identify misunderstandings about vaccines and blood.
  2. Conduct interviews with clinicians who experienced patient blood refusal.
  3. Observe transfusion medicine rounds presentations, onsite blood banks, blood testing facilities, bloodless surgery, emergency blood services, and other components relevant to blood collection and storage.
  4. Interview patients who expressed unease about blood products and vaccine safety.

To do so, it was imperative that they conduct the research in situ at a leading healthcare facility to fully study the rhetorical context of this phenomenon.  A premiere hospital system in the Midwest United States was interested in collaborating on the project.  The Mason and VT team donned their hospital scrubs and got to work with the facility’s Department of Transfusion Medicine.

Gerdes, Ojedele-Adejumo, Wiggins and Lawrence outside surgery

Following a thorough assessment over months of time, the researchers identified several critical actions, and potential pitfalls, in the development of a successful communication approach to the targeted patient group.

First, they determined it was vitally important to direct patients to reputable networks and sources of information on the blood supply system. Additionally, they found that having a trusted physician engage in an extended discussion with the patient helped address and allay specific concerns. (It was recognized, however, that there is often not the time, structure, or training for a clinician to adequately implement this step. Further, the blood system is very complex and demands for specific patient accommodations are often difficult to fulfill.) One interesting observation during the onsite work was that the patient interviews positively influenced the patient’s perception of their care.  Patients were grateful for the chance to tell their stories to Gerdes and Lawrence and reported that the interviews and discussions helped to restore appreciation for and trust in the hospital.

Although Lawrence’s and Gerdes’ study is still ongoing and they continue to recruit more patient interviews, the results and guidelines have already been enthusiastically received at the Rhetoric Society of America (RSA) Annual Conference and at the Center for Emerging Zoonotic and Arthropod-Borne Pathogens annual symposium.  They are also working on a paper for a key industry journal. The project also has received continued 4-VA at Virginia Tech to support collaboration with Tom Ewing on his “Human Dimensions of Infectious Disease” project. This spinoff supports two additional undergraduate research assistants, Hailey Richards at Tech and Katy Morejon Portillo at Mason.

Lawrence praises the 4-VA support at George Mason and Tech which brought the project to fruition. “We never would have been able hire our graduate students and to conduct the site visit without 4-VA.  Our time at the hospital brought the complexities of the clinical experiences—for patients and physicians—to life,” Lawrence explains.  “Those firsthand encounters allowed us to truly understand the gravity of the situation many patients find themselves in, and the physicians recognized the importance of working across departments to give every patient the best care possible.”

 

 

George Mason Team Identifies Technology to Enhance Artificial Photosynthesis

 

When a 4-VA Collaborative Research Grant results in the production of a novel concept for technology solutions to support energy and climate issues, while also sharing resources and data between higher education institutions in Virginia and providing faculty and student research opportunities, it is another win for the program. 

This was achieved following 4-VA’s approval of a proposal by George Mason’s Yun Yu, an Assistant Professor in Chemistry and Biochemistry Department, for a grant entitled Nanoscale Visualization of Electrocatalytic Carbon Dioxide Reduction Activity at Cu Nanocatalysts.  Yu’s goal was to investigate options in catalytic electrode materials to improve and enhance electrocatalysis, a process essential for harnessing sustainable energy sources for artificial photosynthesis. While nanostructures are currently recognized as the most successful catalyst for many chemical reactions, there is more to understand about tailoring their crystalline planes to improve activity and selectivity. 

Yu wanted to gain deeper insights into various nanocatalysts used in carbon removal technologies. The conventional approach to conducting this study often involves measuring the entire catalyst, composed of numerous small particles with varying sizes and shapes. However, critical information, such as the impact of heterogeneities on performance, is often lost in such ensemble measurements.  Yu saw the potential for leveraging the the nanoscale scanning electrochemical microscopy on the George Mason campus to obtain detailed surface reactivity maps of nanocatalysts.  However, to do so, Yu needed to acquire shape-controlled nanostructures, including copper nanowires, copper nanocubes, and nickel–iron layered nanosheets.  He did so through a partnership with Sen Zhang, Associate Professor of Chemistry at UVA. 

Yu’s team, graduate student Dan Tran and undergraduate students Solyip Kim, Melissa Nguyen, and Mackenzie Dickinson played a key role in the project, receiving funding and real-world research experience. Together, they identified furfural reduction, an important reaction for sustainable biofuel generation. They noted a distinct contrast in activity between copper and graphite support. “These preliminary experiments have demonstrated the viability of our scanning electrochemical technique in spatially resolving catalytic activity across nanoscopic structures,” explains Yu. They further expanded the application to the study of nickel–iron catalysts. “Our data suggested that adding trace amount of cerium oxide to the catalysts significantly enhances water oxidation activity. We would not have these insights without this powerful electroanalytical technique.” says Yu.  

The initial results have provided Yu with a springboard to develop external grant proposals to systematically study the role of cerium oxide and quantify the effects of its loading on the apparent catalytic activity of the developed catalysts.  “This 4-VA opportunity allowed us to create a partnership with UVA, create a team to implement further investigation via George Mason’s nanoscale scanning electrochemical microscopy, and now apply for further funding to move this project forward,” concludes Yu. 

 

Pictured in Featured Image: Graduate student Dan Tran operating the scanning electrochemical microscope.

4-VA@Mason Award Produces Important Results in Childhood Working Memory Research

In the Developing Minds Lab at George Mason, Sabine Doebel says she has a dream job. As an undergraduate, she became fascinated by children’s thinking and how it changes with age. Now, as an assistant professor in the Department of Psychology, where she directs the Lab, she spends much of her time designing studies to understand how young children learn to think and act flexibly — that is, how they develop ‘executive function’ skills. Although these skills are vital to children’s success in school and beyond, much remains unknown about their development.

Particularly important for academic success is working memory — the capacity to maintain and manipulate information of known words, numbers, and other symbols. Working memory is often measured using tests including the Backward Digit Span, in which children repeat increasingly long sequences of digits in backwards order. “I have always been interested in how experience may shape working memory skills,” says Doebel. She was particularly curious about how early learning experiences at home— specifically in the domains of literacy and numeracy — could foster growth in working memory span.

Through an earlier 4-VA award, Doebel had the opportunity to share this new project idea with her colleague and mentor, Angeline Lillard, a widely respected developmental psychologist and researcher in the Department of Psychology at UVA. Explains Doebel, “Our collaboration would not have taken off the way it did if it hadn’t been for Angeline, because she was the one who sent me an email about 4-VA. She said, ‘Have you heard of 4-VA? We should consider this option.’”

When 4-VA@Mason approved Doebel’s proposal “How Does Experience Support Working Memory Development?” the team got to work.  Doebel’s lab recruited and tested over 100 children on four different variations of the backward span tasks. Parents also completed a detailed survey reporting frequency and variety in various home learning practices.  Lillard leveraged her own participant pool and school connections to recruit an additional sample of conventionally schooled and Montessori-educated children.

Doebel enlisted Mason undergraduate student Jordan Hassani and PhD student Nicole Stucke to collect the data. Hassani created the survey, tested the children, and coded the data.  Stucke, who has functioned as the Developing Minds lab manager, helped with testing. Other team members, including Mason undergraduate Scarlett Bird-Guerra, were involved in community-based recruitment efforts.

Jordan Hassani
Nicole Stucke with child in study

UVA undergraduate Maksud Juraev and graduate student Abigail Kissinger led the UVA data collection efforts.

The team noted that the results were both predicted and surprising.  As expected, they found that children show larger backward spans for items that are relatively familiar—for example, performance on trials that involved the digits 1, 2, 3 was better than on trials involving 7, 8, 9. However, while Doebel expected that children who engaged in more numeracy practices at home might show better performance on a backward span task involving digits, this was not found to be evident.  Instead, it was observed that the backward digit span was related to home literacy practices, and that this was true even after accounting for effects of other home learning practices and age.

Doebel presented the findings at the American Psychological Association and at the Society for Research on Child Development. She plans to submit manuscripts to academic journals in the field.

Next up for the team is to dive deeper into Lillard’s connections in Charlottesville with Montessori schools to test whether children who are Montessori-educated show larger backward digit spans than children who are educated in conventional schools, as expected given the emphasis Montessori schools place on literacy and numeracy.

Doebel reflects on the relationships and growth experienced through the 4-VA project, “As a result of this funding, my students have progressed in their career trajectories — Jordan is now at the University of Maryland as a research coordinator in a NIH-funded lab, and he’s hoping to gain admittance to a Ph.D. program in clinical psychology. He got that opportunity in part because he participated in this project through 4-VA where he engaged real research experience.”

Victoria Rabii

The original project has also led to a further study that will investigate the role of language in working memory by exploring how bilingual children with varying degrees of exposure to numerical language perform on the backward digit span task. This project is led by Victoria Rabii, a rising second year PhD student in the Applied Developmental Psychology program who is co-mentored by Doebel and Dr. Adam Winsler and funded by a Presidential Scholarship. The goal of the project is to better understand how young children’s working memory performance may be affected by their proficiency with relative linguistic concepts. “Previously, when children scored low on the task it was pretty common for this to be interpreted as indicating low working memory ability. But now things are changing a bit and we are asking whether children may show better performance if they are more fluent with the content that is integral to the task,” says Doebel.

Personally, and professionally, Doebel is grateful for the collaboration with Lillard.  “Angeline has been a major mentor for me — it means a lot to have a relationship with her.  We have published together previously, and we are always thinking about new project ideas that could lead to external funding. This likely never would have happened if not for 4-VA,” Doebel concludes.

 

 

Researchers Develop Computational Models to Support Successful Organization of Local Events

As illustrated in Robert Putnam’s renowned book “Bowling Alone: The Collapse and Revival of American Community,” Americans have become increasingly isolated over the decades, often spending leisure time alone without social gatherings. During the COVID-19 pandemic, this issue of isolation was exacerbated, calling further attention to the public health crisis of loneliness and isolation in the United States.

To help encourage in-person gatherings, Event-Based Social Networks (EBSNs), such as Meetup.com and Facebook Events, have become an increasingly vital tool for facilitating these occasions based on shared interests — ranging from farmers’ markets to game nights. To maximize the effectiveness of EBSNs, a group of Mason faculty members with interests in community engagement, machine learning, and geographical data analysis wanted to take a closer look at how these arranged local gatherings fluctuated depending on community and group characteristics. They were able to undertake this analysis following the approval of their 4-VA@Mason Collaborative Research Grant proposal entitled “AI for AI: Toward Community-level Human-AI Collaborations in Local Meetups.

Led by Myeong Lee, Mason’s Assistant Professor of Information Science and the Director of the Community Informatics Lab, the researchers also included former College of Science faculty members Olga Gkountouna, who assisted with machine learning model development, and Ron Mahabir who provided insight on geographical data analysis. Amr Hilal of Virginia Tech helped with data analytics from a machine learning perspective.

While it is known that EBSN users’ participation in Meetup events are influenced by group organizers’ promotions and event frequency, the effects of ecological factors, such as the number of similar groups surrounding a Meetup group, had not been previously studied. The goals of the project were to quantitatively examine how EBSN groups’ ecological features shape the performances of Meetup groups within that organizational ecology. They also wanted to create baseline benchmarks for how state-of-the art AI technologies can predict Meetup groups’ success.

To do so, the team conducted two studies of Meetup data for 500 cities in the US, extracting factors pertaining to “Meetup niches,” which considers similar groups surrounding a Meetup location.

The results revealed intriguing patterns, one of which was that if a Meetup group’s description resembles other groups in their geographical area, it tends to attract more participants. In a second finding, the team implemented three advanced machine learning models to predict the success of local Meetup groups, finding that the performances of these prediction models vary across different categories and cities, with some outperforming the state-of-the-art models.

“Overall, our research during the 4-VA project period will provide a basis for understanding human-AI collaboration at the community level by revealing how various factors shape and predict the success of local groups,” says Lee.

Lee credits the success of their findings to a strong team of student researchers, including graduate students Julia Hsin-Ping Hsu who worked on developing deep learning models and ecological features and Ishana Shinde who assisted in calculating community-level features. Undergraduates Victoria Gonzales focused on descriptive statistics of variables; Joel Adeniji managed visualization; and Nnamdi Ojibe handled data cleaning and geographical data aggregation.

The group is now disseminating their findings in the field – one study was published at the International Conference on Communities and Technologies (C&T), and the other is under submission to a premier journal. Lee is planning to write an external NSF grant using the preliminary results from the research, proposing the curation of Meetup-based social gathering data with the promising community-level ecological factors.

“The 4-VA@Mason grant significantly helped me and my team jump-start the project and develop the research studies,” says Lee.  “What’s more, it allowed the team to connect with researchers outside of Mason to discuss additional meaningful community-based topics, thus broadening our future possibilities.”

 

 

 

4-VA Team Applies Novel Technology to Functional Magnetic Resonance Imaging

Incorporating control-theoretic methods into neuroscientific research was the interest that brought together Xuan Wang, Assistant Professor in Mason’s Electrical and Computer Engineering, and Mainak Patel, Assistant Professor of Mathematics at William and Mary.   Supported by a 4-VA grant, the two wanted to look closer at adapting cutting edge technology in functional magnetic resonance imaging (fMRI) to create a new approach to facilitate the prediction and regulation of the firing rate dynamics of brain neurons.  The real-world application of this research is to facilitate brain disease treatment, such as epilepsy, and brain-computer interface.

“As a result of this project, we have developed two network models, a firing rate dynamics model describing the microscale neuronal activities of the brain; and another to measure the small changes in blood flow that occur with brain activity,” explains Wang.  “We have also created an effective data-driven algorithm that can reconstruct and predict the rate and fMRI dynamics of the brain.”

Wang and Patel received human brain fMRI data from United States Naval Academy through Assistant Professor Duy Duong-Tran and support from Li Shen, Professor of Informatics in Biostatistics and Epidemiology at the University of Pennsylvania.

Results of the research have been publicly shared via two abstracts at the Organization for Human Brain Mapping conference.  Follow-up work submitted to the 2024 Medical Image Computing and Computer-Assisted Intervention Conference is currently under review. Another paper on the project was submitted to the Institute of Electrical and Electronics Engineers Transaction on Automatic Control and is currently being considered for publication.

Graduate student Muhammad Umair (left), who gathered and processed fMRI and firing rate data for the research, won first place at the College of Engineering and Computing Innovation Week at Mason with a poster titled ‘Subject and Task Fingerprint using Dynamic Reconstruction from fMRI Time-series Data’.

Based on the results of the 4-VA project, Shen, Duong-Tran, and Wang are currently preparing a National Science Foundation grant proposal for more extensive research.

“Thanks to the seed funding from 4-VA, my collaborators were able to jump-start our research. We successfully validated preliminary hypotheses and will now leverage our findings further. Currently, we are in the process of applying for larger grants to sustain and expand our efforts on this topic,” adds Wang.

 

 

 

 

4-VA@Mason Funded Project Creates Professional Learning Series to Support Inclusive Classroom Co-teaching

 

Almost 10% of Virginia’s students aged 6-21 are identified as students with disabilities. Of this group, almost 68% spend the majority of their school day in inclusive, general education classrooms receiving special education services through co-teaching partnerships of general and special education teachers.

Observations of this teaching arrangement, however, reveal challenges faced by special education teachers who often simply act as an assistant. Consequently, they are often not able to deliver the specially designed instruction necessary to meet the learning needs of the student with disabilities. Co-teachers often do not understand the expectations for this scenario, or they have not received the professional learning appropriate for their classroom. Without a true co-teaching partnership, the achievement outcomes for students may not be met.

This dilemma had been on the mind of Margaret Weiss, Associate Professor of Special Education at Mason who has long researched co-teaching and pre-service teacher preparation.  She saw an acute need to develop and then test a hybrid professional learning series to prepare general and special education teachers in secondary inclusive classrooms to implement effective co-teaching practices.

In projecting out this need, Weiss knew that longtime colleague Wendy Rodgers, an Associate Professor at VCU, would be the perfect collaborator. Rogers specializes in inclusive classrooms, co-teaching, learning disabilities, single-case design methods, collaboration, and classroom observation.  As VCU is a partner in the 4-VA network, Weiss was able to invite Rodgers to join her in a 4-VA proposal as a co-principal investigator, which was subsequently greenlighted by the 4-VA@Mason Advisory Board.

Weiss and Rodgers began by assembling a team including graduate student Karli Zilberfarb at VCU and Holly Glaser from Mason for module development and production, and Boris Gafurov at Mason to develop applications.  Together, they created five professional learning modules which include information, readings, checklists, sample lesson plans, reflection documents, video samples from teacher classrooms, and application activities for teachers who are learning to co-teach together.  The series was then pilot tested by teachers at Liberty High School in Fauquier County, Va.  Although not originally planned, the 4-VA team also developed a web-based, shareable co-teaching lesson planning application that is also being pilot tested in local schools.

Weiss enlisted the help of Virtual Virginia’s Steven Sproles as module host and the Virginia Department of Education Training and Technical Assistance Center at Mason for further review of materials.

Upon presentation to teachers, the series was especially well received and was found to be very helpful as the procedures were implemented in classrooms. Weiss notes, “It has been great to be able to create these materials. We are very excited about reactions we have from school divisions and professionals in Virginia and beyond.” (School divisions in North Carolina and Georgia have already shown an interest in the program.)

Continues Weiss, “This 4VA grant was a fantastic opportunity for Wendy and me to bring our ideas to fruition; we had not been able to dedicate the time and energy to making it happen before this grant. I am hoping that this pilot study will set us up in a great position to apply for a significant external funding award.”

 

 

Ethical Data Analytics: Investigating Data as a Pedagogical Practice for the Humanities

While data analysis is critical to any research, it is important that users are acutely aware of what is behind the data — including the moral obligations regarding the gathering and protection of the data.  It is recognized that researchers should be informed about ethical sources and uses of data and understand both the potentially marginalized voices and the audiences within the dataset.  Faculty at four 4-VA partner schools (VT, ODU, JMU and Mason) coalesced around the need to raise awareness about the opportunities and limitations in data analytics as an area of research and practice for the field of humanities.  Moreover, they were interested in building a methodological framework for humanities instructors.

As the team saw it, the need for critical data literacy should not be limited to data scientists or engineers. Communicators, designers, developers, artists, historians, and more are asked to make sense of increasingly complex data sets. They were interested in developing practice-oriented pedagogical resources to enable instructors to support students as they seek jobs and internship opportunities throughout the state. In this way, they could add diverse voices to the technology sector and Women in Tech opportunities, especially for students who are not able to afford an engineering degree.

While data analysis is critical to any research, it is important that users are acutely aware of what is behind the data — including the moral obligations regarding the gathering and protection of the data.  It is recognized that researchers should be informed about ethical sources and uses of data and understand both the potentially marginalized voices and the audiences within the dataset.  Faculty at four 4-VA partner schools (VT, ODU, JMU and Mason) coalesced around the need to raise awareness about the opportunities and limitations in data analytics as an area of research and practice for the field of humanities.  Moreover, they were interested in building a methodological framework for humanities instructors.

As the team saw it, the need for critical data literacy should not be limited to data scientists or engineers. Communicators, designers, developers, artists, historians, and more are asked to make sense of increasingly complex data sets. They were interested in developing practice-oriented pedagogical resources to enable instructors to support students as they seek jobs and internship opportunities throughout the state. In this way, they could add diverse voices to the technology sector and Women in Tech opportunities, especially for students who are not able to afford an engineering degree.


The project was led by Mason’s Nupoor Ranade, Assistant Professor in the Department of English.  Ranade was joined by ODU’s Daniel Richards, Associate Professor, Department of English; JMU’s Ja’La Wourman Assistant Professor, School of Writing, Rhetoric & Technical Communication: and VT’s Sweta Baniya, Assistant Professor, Department of English.

Armed with a 4-VA grant, the group set to work on the planning and execution of a one-day workshop for delivery at each of the four campuses.  Targeted attendees included tenure-track and non-tenure track faculty, post-doctoral scholars, graduate teaching and research assistants and graduate students.  The co-PIs acted as organizers at their respective institutions and were present for the workshops.

The workshops were delivered during April 2023 and were very well received, garnering many positive results.  Attendees left the workshops with specifically designed training materials including PowerPoint presentations and handouts.

The team’s next objective was to disseminate the workshop resources and results to the broader community, which came to fruition through their website https://www.innovationsindata.org/.

They then presented part of their findings at the International Society of Technical Communication’s Summit in Atlanta in May 2023, which resulted in numerous messages from industry practitioners interested in collaborating on further opportunities to add to the research. They have also shared the workshop summary and workshop outcomes at the Association of Computing Machinery Special Interest Group on Design of Communication October conference in Orlando, Fla.

“This grant gave Daniel, Ja’La, Sweta and I an opportunity to develop and share concrete pedagogical resources with Virginia faculty (and beyond) that will enable humanities researchers and students incorporate data analytics studies in human-centered audience analysis,” concludes Ranade.  “It looks like this is just the beginning!”